Energy, Plants, and Humans
Grade 5

Come and learn about the how the sun fuels most life on Earth.

Overview of Unit:
• Pre-assessment
• Thought experiment, No sun
• Solar energy on Earth
• Plant cells
• Photosynthesis
• The Sun and Humans
• Field Trip
 o Food Web
 o Santa Fe Cholla
 o Leaf Dissection
• Plant cell model
• Photosynthesis, making and breaking glucose
• Post-assessment
• Glossary

Students will know:
• Related vocabulary
• Plants, leaves, and plant cells have specialized anatomy
• Plants are producers and animals depend on them for survival
• Humans rely on plants in many ways
• The process of photosynthesis

Students will be able to:
• Create a mini glossary
• Read nonfiction text and apply this knowledge
• Support ideas with evidence
• Learn directly from nature through making careful observations
• Apply knowledge to a new task
• Use drawing to record data or information
• Understand and make a chart and model
• Conduct a field study
• Use scientific tools

Links to Standards
• Common Core
 o RI.5.5
 o RI.5.10
Lesson Plans:

• **Pre-assessment**
 o **Purpose:**
 ▪ Assess what students already know about the topic
 ▪ Ask students to support their thinking with evidence
 o **Time:**
 ▪ 15 minutes
 o **Intended structure**
 ▪ Ask students to answer the questions on page 2
 ▪ Reassure them that it is ok if they do not know the answers, this is to see what they still need to learn

• **Thought Experiment**
 o **Purpose**
 ▪ Explore the impact of the sun on Earth
 ▪ Have students make a hypothesis and support their claims with specific examples
 o **Time**
 ▪ 30 minutes
 o **Intended structure**
 ▪ Introduce the writing prompt
 ▪ Give example of what evidence is and how to incorporate it into their writing
 ▪ If necessary, have students brainstorm together
 ▪ Independent writing, or homework assignment
• **Solar Energy on Earth**
 o **Purpose**
 ▪ Practice non-fiction reading
 ▪ Review nonfiction text structure
 o **Time**
 ▪ 30 minutes
 o **Intended structure**
 ▪ Anticipatory set:
 • Revisit the paragraphs they wrote as the Thought Experiment
 • Discuss what the sun helps them do every day
 ▪ Activity:
 • Have students read each paragraph independently
 • Have them underline the main idea
 • Have them circle words they think are important, recording these in the glossary
 • Come together at the end of both paragraphs to discuss the text features
 ▪ Closing:
 • Have students record five ways they used solar energy
 • They could each draw one on a sticky note and bring these up to the board
 • The sticky notes could be sorted in different ways: “fossil fuels, foods, and other” or in another way

• **Plant Cells, Photosynthesis, and The Sun and Me**
 o **Purpose**
 ▪ Practice non-fiction reading
 ▪ Review nonfiction text structure
 ▪ Use other formats to learn and share ideas (comics and diagrams)
 o **Time**
 ▪ 45 minutes
 o **Intended structure**
 ▪ Anticipatory set:
 • Ask students to discuss the “Imagine…” in small groups
 • Report back what this would be like
 ▪ Activity:
 • Have students read each paragraph in Plant Cells independently
 • Have them underline the main idea
 • Have them circle words they think are important, recording these in the glossary
 • Come together at the end of both paragraphs to discuss the text features
 • Have students read the comic in small groups
• Have them compare and contrast the paragraph with the comic
• Have them discuss:
 o Which they think taught them more
 o Which was more fun
 o Why do they say that
• Share their ideas in the whole group
• Ask them what make a “good” educational comic

 ▪ Closing:
 • Have students create their own comic on page 7
 • Challenge them to include at least 3 ways humans use energy
 • This could be homework assignment
 • Let students share these with the class

 o The Sun on My Skin
 o Purpose
 ▪ Practice non-fiction reading
 ▪ Make connections between text and personal experiences
 ▪ Read and understand maps as a source of data
 o Time
 ▪ 30 Minutes in Class, 30 Minutes of Homework
 o Intended Structure
 ▪ Anticipatory Set
 • Have students close their eyes and imagine the feeling of warm sunlight on their skin
 • Ask how many have had a sun burn or had their skin get darker in the sun
 • Today we are going to learn about the impact of sun on the skin
 ▪ Activity
 • Use your favorite reading structure to read the article
 • Ask students what information they learned
 • Ask students where the information came from
 o Explain the role of the CDC and the NIH in our country
 • Focus on the map and have a group discussion:
 o What does this map show?
 o How do you know?
 o What can you learn from this map?
 o Which states have the greatest number of people who are diagnosed with skin cancer?
 o What are the states with the lowest diagnosed rates of skin cancer?
 o Where is New Mexico in this range?
 o What do you think might be the reason that there are different rates in different states?
• Closing and Homework
 • Closing question: What will you do to protect yourself against the sun?
 • Homework: Have students imagine that they worked at the CDC or NIH. Their job is to share information about the dangers that the sun can have. Their assignment: create some sort of information that could teach the public about the potential harmful impact of the sun. This can take any form from a piece of art, film, pamphlet, poster, etc.

 o Field Trip to the Botanical Garden
 o Structure of Field Trip
 ▪ 15 minutes – Begin as a group
 ▪ 1 hour 45 minutes – Rotate through 3 Activities
 ▪ 15 minutes – Closing activity as a group
 ▪ Time for teacher and class to explore
 ▪ They will participate in three activities around the garden
 • Make a Food Web with native Santa Fe animals
 • Learn about the endangered Santa Fe Cholla and plant a piece of a cholla to grow in the classroom
 • Explore the anatomy of two different leaves in the garden and look at how plants breathe

 o Making Models of Plant Cells
 ▪ Purpose
 • Create a model of something too small to see
 ▪ Time
 • Variable, depending on materials choice
 ▪ Materials
 • If you decide to make edible cells:
 o Small Tupperware containers, representing the cell wall
 o Clear or light colored Jello, representing the cytoplasm
 o Variety of at least 9 different fresh fruit and/or dried fruit, such as grapes, blueberries, cherries, strawberries, etc, representing all of the organelles
 • If you decide to make a non-edible model:
 o Small Tupperware containers, representing cell walls
 o Variety of craft materials, beads, plastic, fun foam, etc, representing the organelles
 o Clear drying glue, representing the cytoplasm
 ▪ Structure
 • Anticipatory set
 o Discuss what students learned about leaves at the Botanical Garden
Review what all of the organelles in a cell do and why they are important, pg 11 and 12

Activity
- Have students build cells
- Start by showing them all the components and filling out the Cell Wall line together
- Have students decide what each organelle should be represented by before starting to build
- Allow students to build the cells

Closing
- Look at the different models they build
- Complete page 13, even as a homework assignment
- Discuss why models are important

Photosynthesis, Chemical Equation

- **Purpose**
 - Have students create another form of a model that represents something too small to see
 - Understand that cells can pull molecules apart and put them back together in a different way
 - Everything is made of smaller parts
 - Understand that matter is not destroyed or created, just transformed from one form to another

- **Time**
 - 45 minutes – 1 hour

- **Materials**
 - Periodic table
 - Copies of what glucose looks like, see last page of teacher guide
 - Toothpicks
 - Gumdrops or three colors of clay

- **Structure**
 - **Anticipatory Set**
 - Together, read the article on cellular respiration and the elements
 - Reflect on what this means
 - Discuss how the elements can be joined together in different ways, giving some examples (H₂O have 2 Hydrogen and 1 Oxygen)
 - Review what happens during photosynthesis
 - **Activity**
 - Give each group a pile of materials
 - Discuss that just like a mathematical equation, there needs to be the same number of each type of element on both sides of the equation
o Have students start with hydrogen, how many are on the right side of the equation? Answer: 12
o How many need to be on the left of the equation? Answer: 12
o Where do you find hydrogen now? Answer: H₂O
o How many H₂O will it take to make there be 12 hydrogen on the left? Answer: 6
o Fill in 6 on the left
o Move on to carbon, there are 6 carbon atoms on the right, which means there need to be 6 CO₂ on the left
o Now, it gets complicated… if there are 6 CO₂ and 6 H₂O on the left, that means there are 18 oxygen atoms on the left
o How many oxygen are on the right side of the equation? Answer: 6
o That means we have 12 oxygen left over. Oxygen like being in pairs… so how many O₂ are there on the right? Answer: 6
o The final should read:
 • 6 CO₂ + 6 H₂O becomes 1 C₆H₁₂O₆ + 6 O₂

• Closing
 o Have students test this:
 o Start by choosing a color for each atom (E.g. blue = O)
 o Build 6 CO₂ and 6 H₂O
 o Deconstruct these
 o Build the C₆H₁₂O₆
 o See what is left over, there should be 12 O
 o Build 6 O₂
 o There should be nothing left over.
 o Remind them that cellular respiration is the reverse process
 o Have students make the original 6 CO₂ and 6 H₂O with these glucose and oxygen

• Post-assessment
 o Purpose
 ▪ Assess what was learned in the Garden and through the unit
 o Time
 ▪ 15-20 minutes
 o Intended structure
 ▪ Have students take the assessment individually